

Cleavage vs Rearrangement Ratios and Secondary Deuterium Kinetic Isotope Effects in the Thermolysis of Conformationally Fixed Cisoid Vinylcyclobutanes

Joseph J. Gajewski* and Gitendra C. Paul

Department of Chemistry, Indiana University, Bloomington, Indiana 47405

Received September 25, 1990

The first-order rate constants for the thermally induced retro 2 + 2 cleavage and rearrangement of 5methylenespiro[3.5]nonane occur in a 1:2 ratio. In contrast, a 2:1 ratio of these rate constants is usual from conformationally unbiased vinylcyclobutanes. Comparison of the activation parameters suggests that the rearrangement in unbiased systems results from an unfavorable entropy of activation which suggests that the rearrangement is concerted. For the rearrangement of 5-methylenespiro[3.4]octane, the secondary deuterium kinetic isotope effect at the exo-methylene carbon $(k^{\rm H}/k^{\rm D_2})$ is 1.086 \pm 0.023. This is also consistent with concert in the rearrangement where exo-methylene rotation contributes to the reaction coordinate. The secondary KIE for cleavage of 5-methylenespiro[3.4]octane is 1.025 \pm 0.027.

The first-order thermolysis of unrestricted vinyl cyclobutanes gives retro 2 + 2 cleavage products and cyclohexenes via a 1,3-shift of carbon in ratios typically greater than two (2).^{1a-c} There is evidence for reversible bond fission with (2-alkylvinyl)cyclobutanes since geometric isomerization occurs at about the same rate as cleavage. Whether or not a freely rotating biradical is involved is unclear in the hydrocarbon cases, although a study by Doering and Mastrocola on the (2-cyanovinyl)cyclobutanes reveals some nonrandom behavior in the geometric isomerization.^{1d}

The question of rearrangement vs cleavage would appear to be a function of the geometry of the species generated upon initial fission of the cyclobutane allylic bond. In the extreme if biradicals are formed, there are two geometric isomers, and only the cisoid form can close to a cyclohexene.

Therefore, in the vinylcyclobutane rearrangement, it is necessary to establish the extent of cleavage that occurs from the cisoid species. In geometrically restricted vinylcyclobutanes, using as the most studied example bicyclo[3.2.0]hept-2-ene, the rate of cleavage is equal to or less than half the rate of the 1,3 shift.² Further, 1,3-shift in

° (a) Ethylene glycol, p-TsOH·H₂O, reflux; (b) LiAlH₄, Et₂O; (c) MsCl, Et₃N, Et₂O, 25 °C; (d) 4,4'-dichlorodiphenyl diselenide, NaBH₄, EtOH, reflux; (e) acetone, BF₃·Et₂O, reflux; (f) lithio-cyclopropyl phenyl sulfide, THF, -78 °C; (g) p-TsOH·H₂O, PhH, reflux; (h) H₂N·NH₂·H₂O, K₂CO₃, ethylene glycol, Δ ; (i) MCPBA, THF, -10 °C; (j) CCl₄, Et₂NH, reflux.

bicyclo[3.2.0]hept-2-ene occurs with roughly 72% inversion and 28% retention at the migrating carbon, suggesting some degree of concert in the rearrangement. Since it was extremely difficult to determine the cleavage to rearrangement ratio in bicyclo[3.2.0]hept-2-ene because the 1,3-shift product, norbornene, readily undergoes the retro-Diels-Alder reaction to give the same products as the retro 2 + 2 from reactant, it appeared appropriate to examine the question in a conformationally restricted system whose products would be stable. To this end, 5-methylene spiro[3.5]nonane and 5-methylenespiro[3.4]octane, which are vinylcyclobutanes that cannot ring open to transoid allylic species, were prepared and pyrolyzed. Further, this system allows deuterium labeling at the *exo*-methylene to examine kinetic isotope effects.

^{(1) (}a) For a review, see: Gajewski, J. J. Hydrocarbon Thermal Isomerizations; Academic Press: New York, 1980. (b) Frey, H. M.; Pottinger, R. J. Chem. Soc., Faraday Trans. 1978, 1827. (c) For recent work, see: Getty, S. J.; Berson, J. A. J. Am. Chem. Soc. 1990, 112, 1652. Gajewski, J. J.; Paul, G. C. J. Org. Chem. 1990, 55, 4575. (d) Doering, W. von E.; Mastrocola, A. R. Tetrahedron 1981, 37, C329.

 ^{(2) (}a) Baldwin, J. E.; Belfield, K. D. J. Phys. Org. Chem. 1989, 2, 455;
 J. Am. Chem. Soc. 1988, 110, 296. (b) Klarner, F.-G.; Drewes, R.; Hasselmann, D. Ibid. 1988, 110, 297.

^a See footnote a, Scheme I. ^b(b¹) LiAlD₄.

Results

5-Methylenespiro[3.5]nonane, 6, was prepared from (2carboethoxy)cyclohexanone, 1, using the reaction sequence of Scheme I.

Alternative routes to 6 via ketone 9 were frustrated by the difficulty in obtaining 9. Thus, while zinc dust debromination of 7 has been reported to give 9,³ contradicting an earlier report that 8 is the product of debromination. we found, not unreasonably, that the debromination product is indeed 8 as reported earlier by Conia (Scheme II).⁴ Further, treatment of bromo ketone 10 with potassium tert-butoxide in refluxing benzene gave enol ether 11 as a major product along with $\sim 2-3\%$ of spiroketone 9 as was reported earlier by Etheredge (Scheme II).⁵

5-Methylenespiro[3.4]octane, 18, was prepared by the same sequence of reactions used for the synthesis of 6 (Scheme III). 5-(Dideuteriomethylene)spiro[3.4]octane, 18- d_2 , was also prepared in a similar fashion with the replacement of $LiAlH_4$ by $LiAlD_4$.

Pyrolysis of 6 in a well-conditioned static reactor at temperatures from 269.7-310.0 °C gave 1,2-dimethylenecyclohexane (19), Δ -1,6-octalin (20), and 2-propyl-3methylenecyclohexene (21) in ratios roughly 1:2:0.4. The first-order rate constants and activation parameters from a weighted least-squares analysis, for the three reactions of Scheme IV, namely, cleavage, 1,3 shift, and hydrogen

		Fable	I.	Kinetics	of	Thermal	Reaction	of	6
--	--	--------------	----	-----------------	----	---------	----------	----	---

temp, °C	$10^5 k_{\text{overall}}, \text{s}^{-1}$	$\frac{k_{\rm clv} \times 10^5}{\rm s^{-1}},$	$k_{1,3} \times 10^5,$ s ⁻¹	$k_{\sim H} \times 10^{5},$ s ⁻¹
310.0	14.698 ± 0.076	4.534	8.441	1.723
290 .0	3.087 ± 0.064	0.936	1.772	0.379
269.7	0.573 ± 0.003	0.167	0.332	0.074

° log k_{overall} (s⁻¹) = 15.24 ± 0.034 - ((50895.6 ± 91.2)/ ϕT). log k_{clv} (s⁻¹) = 14.96 ± 0.010 - ((51513.29 ± 23.26)/ ϕT). log $k_{1,3}$ (s⁻¹) = 14.99 ± 0.056 - ((50885.59 ± 148.09)/ ϕT). log $k_{\sim H}$ (s⁻¹) = 13.74 ± $0.034 - ((49377.29 \pm 90.78/\phi T)), \phi = 2.303R.$

Table II. Kinetics of Thermal Reaction of Compound 18 and 18-d, at 290.0 °Ca

compd	$10^4 k_{\text{overall}},$ s ⁻¹	$k_{\rm civ} \times 10^4,$ ${\rm s}^{-1}$	$k_{1,3} \times 10^4,$ s^{-1}	$k_{\sim H} \times 10^4,$ s ⁻¹
18 18-d ₂	$\begin{array}{r} 1.889 \pm 0.003 \\ 1.779 \pm 0.033 \end{array}$	$\begin{array}{c} 0.6483 \pm 0.0095 \\ 0.6324 \pm 0.0139 \end{array}$	$\begin{array}{r} 1.159 \pm 0.009 \\ 1.067 \pm 0.021 \end{array}$	0.0848 0.0840

^a Overall, $k^{\rm H}/k^{\rm D}_2 = 1.062 \pm 0.020$; cleavage, $k^{\rm H}/k^{\rm D}_2 = 1.025 \pm 0.027$; 1,3 shift, $k^{\text{H}}/k^{\text{D}}_2 = 1.086 \oplus 0.023$.

shift, respectively, are given in Table I.

Pyrolysis of 18 under conditions similar to those for pyrolysis of 6 gave the same types of products in similar ratios. However, the overall rate of the reactions of 18 is roughly 6 times faster than those of 6. The kinetic data is given in Table II.

In an effort to examine the extent of bonding at the exo-methylene carbon of 18, through an examination of secondary deuterium kinetic isotope effects, $18-d_2$ was pyrolyzed under identical conditions. The kinetic data is also given in Table II.

Discussion

As anticipated, the thermal behavior of the conformationally biased vinylcyclobutanes 6 and 18 lead to more rearrangement and less retro 2 + 2 cleavage. The ratio is increased by a factor of roughly 4 relative to other conformationally unbiased vinylcyclobutanes.¹ This suggests that in the ring opening of simple vinylcyclobutanes, the ratio of transoid to cisoid pathways is roughly 7.5 at 290 °C which corresponds to roughly 2 kcal/mol in favor of the transoid pathway in the unbiased cases.

It should be noted that the cleavage reaction of 6 has activation parameters very similar to that for the parent vinylcyclobutane,^{1b} but the preexponential term for 1,3shift is higher than that in the parent case by 1.1 log units. This suggests that the 1,3-shift in the parent case is retarded by a relatively unfavorable entropy of activation which must be a reflection of the difficulty in forming the cisoid species necessary for rearrangement. It is surprising that the higher potential energy for formation of cisoid species is not a result of enthalpic differences. This suggests that the rearrangement is a concerted process requiring a specific geometry for the vinyl group in the transition state. The normal secondary deuterium kinetic

⁽³⁾ Slobodin, Ya. M.; Tsukshverdt, T. V.; Varen'e, G. V.; Khachaturov, A. S.; Volodina, V. F. Zh. Org. Khim. 1972, 8, 1764; Engl. Transl. 1972, 1806

 ⁽⁴⁾ Leriverend, P.; Conia, J. M. Bull. Soc. Chim. Fr. 1966, 121.
 (5) Etheredge, S. J. J. Org. Chem. 1966, 31, 1990.

isotope effect at the terminal methylene in the rearrangement of 18 is reminiscent of that found with the vinylcyclopropane rearrangement which has been interpreted in terms of exo-methylene rotation as part of the reaction coordinate in a concerted process.⁶ Predominant suprafacial-inversion stereochemistry in the vinylcyclobutane rearrangement of bicyclo[n.2.0]n-enes and of bicyclo[2.1.1]heptene has been demonstrated in the 1960s by Berson,⁷ and by Roth,⁸ respectively, in systems where steric effects do not prevent this stereomode. The recent work of Baldwin and of Klarner with the parent [3.2.0] system reveals similar behavior.² There has been concern that the stereochemistry is a result of steric effects guiding a nonconcerted ring opening followed by fast least motion closure.^{1a} However, the observation of a kinetic isotope effect at the exo-methylene carbon reported in this work suggests concert in the vinylcyclobutane rearrangement.

Finally, it is interesting to note that the 6-fold rate increase in the reactions of 18 relative to 6 is not unlike the rate difference found for the solvolysis of cyclopentyl halides relative to cyclohexyl halides and may have similar origins, namely ground-state destabilization of the cyclopentyl system by eclipsing interactions.

Experimental Section

¹H NMR spectra were recorded on a Nicolet Model NT-360 spectrometer (360 MHz) unless otherwise indicated. All chemical shifts were reported as parts per million (δ scale) from TMS and were taken in CDCl₃ solution. Mass spectra (MS) were obtained on a Kratos MS-80 spectrometer. IR spectra were recorded on a Mattson 4020 Galaxy Series FT-IR spectrometer. Gas chromatographic (GC) analyses were performed on a Varian 3700 gas chromatograph equipped with a flame-ionization detector and Varian Model 4270 electronic integrator.

5-[[(p-Chlorophenyl)selenyl]methyl]spiro[3.5]nonane (5). Spiroketone 4^9 (3.0 g, 8.78 mmol) was heated in the presence of hydrazine hydrate (85% in H₂O, 4.5 mL), K_2CO_3 (2.8 g), and diethylene glycol (6 mL) at \sim 150 °C for 3 h and then at \sim 200 °C for 5 h.¹⁰ The cooled reaction mixture was treated with 10% HCl and brine before drying. The solvent was removed under aspirator vacuum. The crude product revealed one major spot on TLC. Purification was achieved by passage through a short silica gel column (3% EtOAc in hexanes) to give 2.61 g (90% yield) of a light yellow liquid which is assigned structure 5: ¹H NMR 7.50-7.18 (m, 4 H), 3.17-3.07 (bd, 1 H), 2.80 (bt, 1 H), 1.95-1.20 (m, 15 H); CIHRMS for $C_{16}H_{21}ClSe (M + 1)$ found 328.0501, calcd 328.0496.

5-Methylenespiro[3.5]nonane (6). The selenide 5 was converted to methylenespirononane 6 by treating with MCPBA in CCl₄ containing Et₂NH according to literature procedures.⁹ Volatiles were removed under aspirator vacuum. Distillation under vacuum led to water white 6 (bp 30-32 °C at 6-7 Torr) in 62% yield. ¹H NMR (400 MHz): 4.65 (m, 1 H), 4.60 (bd, 1 H), 2.14-2.02 (m, 4 H), 1.95-1.80 (m, 1 H), 1.80-1.70 (m, 3 H), 1.68-1.58 (m, 2 H), 1.58–1.50 (m, 2 H), 1.50–1.42 (m, 2 H). ¹³C NMR: 155.60, 103.40, 45.57, 39.62, 32.69, 30.99, 28.49, 22.97, 15.19. CIHRMS for C₁₀H₁₆: found 136.1253, calcd 136.1252.

5-Methylenespiro[3.4]octanes (18 and 18-d₂). The syntheses of 18 and $18 \cdot d_2$ follow the same general procedures as has been described in the synthesis of compound 6. The reduction of ester protected ketone 12 with LiAlD₄ led to dideuterated alcohol 13- d_2 $\sim 100\%$ deuterium incorporation). The formation of 16 and 16- d_2 from 15 and 15- d_2 , respectively, occurred with poor yields (~ 15-16%). The yields of other compounds were comparable to those of six-membered ring compounds. The spectral data of all

previously unknown compounds are as follows.

13-d₂: ¹H NMR 4.01-3.83 (m, 4 H), 2.58 (s, 1 H), 2.13 (bt, J = 7.9-8.6 Hz, 1 H), 1.90-1.50 (m, 6 H); CIHMRS for $C_8H_{12}D_2O_8$ (M + 1) found 161.1152, calcd 161.1146.

14: ¹H NMR 7.50-7.19 (m, 4 H), 3.98-3.86 (m, 4 H), 3.10 (dd, J = 12.2, 3.96 Hz, 1 H), 2.78 (dd, J = 12.2, 8.64 Hz, 1 H), 2.30–2.20 (m, 1 H), 2.05-1.96 (m, 1 H), 1.81-1.75 (m, 2 H), 1.74-1.55 (m, 2 H), 1.54-1.42 (m, 1 H); CIHRMS for C14H17ClO2Se found 332.0081, calcd 332.0082.

14-d₂: ¹H NMR 7.43-7.30 (m, 2 H), 7.24-7.18 (m, 2 H), 3.98-3.86 (m, 4 H), 2.24 (bt, J = 8.6-9.0 Hz, 1 H), 2.05-1.95 (m,(9 lines), 1 H), 1.81-1.76 (m, 2 H), 1.75-1.56 (m, 2 H), 1.54-1.44 (m, 1 H); CIHRMS for $C_{14}H_{15}D_2ClO_2Se$ found 334.0209, calcd 334.0207.

15: ¹H NMR 7.46-7.40 (m, 2 H), 7.25-7.20 (m, 2 H), 3.34 (dd, J = 12.2, 3.96 Hz, 1 H), 2.80 (dd, J = 12.2, 8.64 Hz, 1 H), 2.42–2.22 (m, 3 H), 2.20-1.98 (m, 2 H), 1.85-1.60 (m, 2 H); CIHRMS for C₁₂H₁₃ClOSe found 287.9833, calcd 287.9819.

15-d₂: ¹H NMR 7.45-7.40 (m, 2 H), 7.25-7.20 (m, 2 H), 2.42-2.22 (m, 3 H), 2.20-2.08 (m, 1 H), 2.08-1.96 (m, 1 H), 1.85-1.60 (m, 2 H).

16: ¹H NMR 7.45-7.36 (m, 2 H), 7.25-7.20 (m, 2 H), 3.15-3.00 (m, 1 H), 3.00–2.88 (m, 2 H), 2.88–2.78 (m, 1 H), 2.49–2.31 (m, 1 H), 2.25–2.10 (m, 1 H), 2.10–1.86 (m, 3 H), 1.86–1.57 (m, 4 H); IR 1780 cm⁻¹ (C=O); HRMS for C₁₅H₁₇ClOSe found 328.0118, calcd 328.0133.

16-d₂: ¹H NMR 7.42-7.34 (m, 2 H), 7.25-7.18 (m, 2 H), 3.14-3.00 (m, 1 H), 3.00-2.86 (m, 1 H), 2.42-2.30 (t, 1 H), 2.24-2.10 (m, 1 H), 2.10–1.90 (m, 2 H), 1.85–1.54 (m, 5 H); IR 1771 cm⁻¹ (C=0).

17: ¹H NMR 7.46-7.36 (m, 2 H), 7.25-7.16 (m, 2 H), 3.16 (dd, J = 11.2, 3.6 Hz, 1 H), 2.62 (t, J = 10.8 Hz, 1 H), 2.10–1.54 (m, 13 H); HRMS for $C_{15}H_{19}$ ClSe found 314.0328, calcd 314.0341.

17-d₂: ¹H NMR 7.46-7.35 (m, 2 H), 7.26-7.16 (m, 2 H), 2.10–1.50 (m, 13 H); HRMS for $C_{15}H_{17}D_2ClSe$ found 316.0473, calcd 316.0466.

18: ¹H NMR 4.98 (bs, 1 H), 4.87 (bs, 1 H), 2.33–2.27 (tt, J =7.2, 2.2 Hz, 2 H), 2.09-2.00 (m, 2 H), 1.92-1.80 (m, 4 H), 1.76 (t, J = 7.0 Hz, 2 H), 1.56 (pent, J = 7.0 Hz, 2 H); ¹³C NMR 160.33, 102.80, 49.37, 40.56, 34.53, 32.53, 22.35, 15.77; HRMS for C₉H₁₄ found 122.1097, calcd 122.1096.

 $18-d_2$: ¹H NMR 2.30 (t, J = 7.2 Hz, 2 H), 2.09–2.00 (m, 2 H), 1.98-1.81 (m, 4 H), 1.76 (t, J = 7.0 Hz, 2 H), 1.56 (pent, J = 7.0Hz, 2 H); ¹³C NMR 160.12, 102.26, 49.31, 40.56, 34.53, 32.50, 22.35, 15.76; HRMS for C₉H₁₂D₂ found 124.1204, calcd 124.1221.

Kinetic Studies. Pyrolyses were carried out in a 2-L Pyrex bulb submerged in a molten salt bath containing a 10:7 mixture of KNO₃ and NaNO₂, respectively.⁶ The temperature of the bath was maintained within ± 0.1 °C.

For kinetic studies $2-3 \ \mu L$ of 6 were loaded into the bulb and pyrolyzed for different periods of time at each temperature. The pyrolysate was diluted with acetone and analyzed by capillary GC. The response factor of 1,2-dimethylenecyclohexane relative to 6 was determined separately. The response factors of products isomeric to reactant were assumed unity. At each temperature, overall rate constants were determined from a least-square analysis of the appropriate first-order plot. The individual rate constants, $k_{\rm dy}, k_{1.3}$, and $k_{\sim \rm H}$ were determined by multiplying the overall rate constants by the mole fraction of the products. The overall rate constants for the decomposition of 6 at various temperatures and the individual rate constants of products in the decomposition of 6 are given in Table I.

A least-squares analysis of the results presented in Table I yielding the Arrhenius equations is also tabulated. Kinetic results in the decomposition of 18 and $18 \cdot d_2$ appeared in Table II.

Product Identification. For product identification a 150-µL sample of 6 was pyrolyzed to almost complete conversion. The components in the pyrolysate were separated by preparative GC on a 12-ft 20% OV 101 on chromosorb P column. These compounds were identified by ¹H NMR and ¹⁸C NMR and mass spectral analyses. NMR spectra of compounds 1911 and 2012,13

⁽⁶⁾ Gajewski, J. J.; Squicciarini, M. P. J. Am. Chem. Soc. 1989, 111, 6717.

^{(7) (}a) Berson, J. A.; Nelson, G. L. J. Am. Chem. Soc. 1967, 89, 5503.
(b) Berson, J. A. Acct. Chem. Res. 1972, 5, 406.

 ⁽⁸⁾ Roth, W. R.; Friedrich, A. Tetrahedron Lett. 1969, 2607.
 (9) Gadwood, R. C.; Lett, R. M. J. Org. Chem. 1982, 47, 2268.
 (10) Paquette, L. A.; Roberts, R. A.; Drtina, G. J. J. Am. Chem. Soc.

^{1984, 106, 6690.}

⁽¹¹⁾ van Straten, J. W.; van Norden, J. J.; van Schaik, T. A. M.; Franke, G. Th.; de Wolf, W. H.; Bickelhaupt, F. Recl. Trav. Chim. Pay-Bas 1978, 97, 105.

⁽¹²⁾ Becker, K. B. Helv. Chim. Acta 1977, 60, 68.

matched literature values.

¹H NMR of 21: 5.66 (m, 1 H), 4.89 (bs, 1 H), 4.74 (bs, 1 H), 2.34 (m, 2 H), 2.15 (m, 4 H), 1.68 (pent, J = 6.0 Hz, 2 H), 1.47 (sext, J = 7.5 Hz, 2 H), 0.90 (t, J = 7.5 Hz, 3 H). ¹³C NMR: 143.77, 136.70, 127.34, 107.27, 35.19, 32.98, 26.46, 23.57, 21.85, 14.24. CIHRMS for C₁₀H₁₆: found 136.1243, calcd 136.1252.

Samples of 18 and $18 \cdot d_2$ were pyrolyzed to nearly complete conversion and analyzed by ¹H NMR and GCMS analyses. ¹H NMR of 22¹¹ matched literature values. The 360-MHz ¹H NMR

(13) Benkeser, R. A.; Belmonte, F. G.; Kang, J. J. Org. Chem. 1983, 48, 2796.

spectrum of 23 is 2.22 (t, 4 H), 1.93 (bs, 4 H), 1.80 (pent, 2 H), 1.63-1.57 (m, 4 H), which is consistent with the lower field spectrum previously reported.¹³ Hydrogen shift products 24 (and $24-d_2$) were identified by only GCMS. In analogy with 21, structures 24 and $24 \cdot d_2$ were assigned.

Acknowledgment. We thank the Department of Energy for support of this work.

Supplementary Material Available: ¹H NMR spectra of all new compounds (along with some ¹³C NMR spectra) (18 pages). Ordering information is given on any current masthead page.

Carbon Acidity. 79. Acidity of Enolate Equivalent Compounds: Oxime Ethers

James C. Ciula and Andrew Streitwieser*

Department of Chemistry, University of California, Berkeley, California 94720

Received September 7, 1990

A series of benzylic oxime ethers were synthesized $(CH_3ON=C(CH_2Ar)_2, Ar = phenyl (1), 4-biphenylyl (2),$ 1-naphthyl (3)), and the equilibrium ion pair acidities in THF were determined. The lithium ion pair acidity of 1 was found to be approximately 5 pK units lower than the corresponding cesium ion pair acidity. The oxime ethers are approximately 10 orders of magnitude less acidic than their corresponding ketones for cesium ion pairs. Thermodynamic parameters for the equilibrium acidities were measured and are consistent for contact ion pair monomers being the important species in solution. An aggregation study also indicates that these cesium oxime ether enclates exist mainly as ion pair monomers. The role of the gegenion in the stability of oxime ether anions is discussed.

The use of carbanion intermediates for the formation of carbon-carbon bonds is an important method in synthetic chemistry. A common source of these intermediates comes from the removal of the α -proton of a carbonyl compound by either a lithium amide or alkyllithium compound to produce an enolate ion. Much work have been dedicated to the chemistry of the enolate ion.¹ Recently, the use of carbonyl derivatives has attracted a great deal of attention for their uses as "enolate equivalents" in organic synthesis. The most important classes of these derivatives are the imines,² hydrazones,³ and oxime ethers.^{4,5} An interesting and useful aspect of these "enolate equivalents" is their preference for producing the syn configuration at the CCNR (R = R', OH, OR', NR'₂) partial double bonds.^{5,6} This fact results in reactions of

Table I. Spectrophotometric Data for Oxime Ether Anions in Tetrahydrofuran at -20 °C

O-methyloxime ether of	Cs ⁺ salt $\lambda_{max}^{a}(\epsilon)$	Li ⁺ salt λ _{max} ^a
1,3-diphenylacetone (1)	398 (24 100)	373
1,3-di(4-biphenylyl)acetone (2)	473 (37800)	450%
1,3-di(1-naphthyl)acetone (3)	505 (15000)	С

^a In nanometers. ^bLi⁺ salt is not stable at these conditions so that an extinction coefficient could not be determined. "No absorbance from the Li⁺ salt could be detected.

these anions being both highly regioselective and stereoselective.7

Although many studies on the reactivity and regiochemistry of these intermediates have been done,⁸ relatively few physical studies are available discussing their acid-base behavior or the actual species that are involved in the reactions. Since these reactions are usually carried

⁽¹⁾ House, H. O. Modern Synthetic Techniques, 2nd ed.; Benjamin-

Cummings Publishing Company: Menlo Park, CA 1972. (2) Reviews: Wittig, G.; Reiff, H. Angew. Chem. 1968, 80, 8. Whitesell, J. K.; Whitesell, M. A. Synthesis 1983, 517. Bergbreiter, D. E.; Newcomb, M. Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New York, 1983; Vol. 2, p 243.

⁽³⁾ Review: Enders, D. Asymmetric Synthesis; Morrison, J. D., Ed.;

⁽³⁾ Review: Enders, D. Asymmetric Synthesis; Morrison, J. D., Ed.;
Academic Press: Orlando, FL, 1984; Part B, Vol. 3, p 275.
(4) Spencer, T. A.; Leong, C. W. Tetrahedron Lett. 1975, 45, 3889.
(5) Fraser, R. R.; Dhawan, K. I. J. Chem. Soc., Chem. Commun. 1976,
674. Gawley, R. E.; Termine, E. J.; Aube, J. Tetrahedron Lett. 1980, 21,
3115. Ikeda, K.; Yoshinaga, Y.; Achiva, K.; Sekiya, M. Chem. Lett. 1984,
3, 369. Shatzmiller, S.; Lidor, R. Synthesis 1983, 590.
(6) Philips, J. C.; Perianayagam, C. Tetrahedron Lett. 1975, 38, 3263.
Kofron, W. G.; Yeh, M.-K. J. Org. Chem. 1976, 41, 439. Jung, M. E.;
Blair, P. A.; Lowe, J. A. Tetrahedron Lett. 1976, 18, 1439. Lyle, R. E.;
Saavedra, J. E.; Lyle, G. G.; Fribush, H. M.; Marshall, J. L.; Lijnslij, W.;
Singer, G. M. Tetrahedron Lett. 1976, 49, 4431. Gawley, R. E.; Nagy, T. Tetrahedron Lett. 1984, 25, 263. Lidor, R.; Shatzmiller, S. J. Am. Chem. Tetrahedron Lett. 1984, 25, 263. Lidor, R.; Shatzmiller, S. J. Am. Chem. Soc. 1981, 103, 5916.

⁽⁷⁾ Collum, D. B.; Kahne, D.; Gut, S. A.; DePue, R. T.; Mohamadi, F.; Wanat, R. A. J. Am. Chem. Soc. 1984 106, 4865. Ludwig, J. W.; New-comb, M.; Bergbreiter, D. E. J. Org. Chem. 1980, 45, 4666. Bergbreiter, D. E.; Newcomb, M. Tetrahedron Lett. 1979, 4145.

B. E., Newcomb, M. Ferranderon Lett. 1975, 4145.
 (8) Corey, E. J.; Enders, D. Tetrahedron Lett. 1976, 11. Corey, E. J.; Enders, D.; Bock, M. G. Tetrahedron Lett. 1976, 7. Corey, E. J.; Knapp, S. Tetrahedron Lett. 1976, 4687. Enders, D.; Weuster, P. Tetrahedron Lett. 1978, 2853. Corey, E. J.; Enders, D. Chem. Ber. 1978, 111, 1362.